
CMPTG 5 - Statistical Physics of Neural Networks

Sidharth Kannan

May 2025

1 Higher Point Correlators of Deep Linear Networks

1.1 Recap

Last week, we spent considerable time discussing Gaussian integrals, and derived Wick’s probability
theorem: For some Gaussian with µ = 0 and covariance matrix K.

E[zµ1zµ2zµ3zµ4 ...zµ2m] =
∑

all pairings of µi, µj

∏
Kµiµj (1)

For example, the 4-point correlator is

E[zµ1
zµ2

zµ3
zµ4

] = Kµ1µ2
Kµ3µ4

+Kµ1µ3
Kµ2µ4

+Kµ1µ4
Kµ2µ3

(2)

Recall that zµ is an index into the random vector z, and Kµ1µ2 is the entry in the covariance
matrix that corresponds to the µ1-th row and µ2-th column. Note how each term contains a distinct
way to pair them up.

We applied Wick’s theorem to the toy model of a deep linear network, which is a neural network
of the form

f(x) = WlWl−1Wl−2...W1x (3)

where x is the input, and Wi is the matrix representing the i-th layer of the network. We made
the assumption that for each matrix, the entries are drawn from an i.i.d. Gaussian with mean 0,
σ2 = CW

nl
, where CW is some user defined parameter, and nl is the width of the l-th layer.

From there, our goal was to understand what the distribution of the network output is. In
the end, we want to understand the trained network function, but since it is a function of the
initialization distribution, we will start by analyzing the initialization distribution. That is, given
a dataset D = {xi}, (or if you prefer, for simplicity, given a data point x), what is the distribution
of network output at the l-th layer.

P
(
z
(l)
i |D

)
(4)

To make that more concrete, consider a single layer network, and a fixed data point. We
are interested in understanding the distribution of the random vector z(1) = W1x, where the
stochasticity comes from the fact that the entries of W are drawn from an i.i.d. Gaussian. Now
repeat that process for every intermediate layer in an L layer network.

1

The result that we came to is that for the first layer of the network, the entries in the output
are given by independent Gaussians, with variance

E[zi1;α1
zi2;α2

] = δi1i2
CW

n0

n0∑
j=1

xj1;α1
xj2;α2

(5)

where again, i is the neuron index (the index into the random vector z), and α indexes the
dataset. We introduced the metric,

K(0)
α1α2

=
1

n0

n0∑
j=1

xj1;α1
xj2;α2

(6)

which is analogous to the covariance between each pair of samples in the dataset, which simplifies
our expression for the variance to

E[zi1;α1zi2;α2] = δi1i2CWK(0)
α1α2

(7)

This should make sense, since we have just multiplied this (fixed) vector by a matrix with
independent Gaussian entries. Of course the sum will be a Gaussian. The next step was to derive
a general recurrence for the distribution in arbitrary layers. We plugged in the recursive definition
of a linear network,

E
[
z
(l+1)
i1;α1

z
(l+1)
i2;α2

]
=

∑
j1,j2

E
[
W

(l+1)
i1j1

z
(l)
i1;α1

W
(l+1)
i2j2

z
(l)
i2;α2

]
(8)

=
∑
j1,j2

E
[
W

(l+1)
i1j1

W
(l+1)
i2j2

]
E
[
z
(l)
i1;α1

z
(l)
i2;α2

]
(9)

= δi1i2
CW

nl
E
[
z
(l)
i1;α1

z
(l)
i2;α2

]
(10)

Thus, we see that at each layer, the variance is multiplied by a constant factor, CW /nl, leading
to the kind of exponential behavior that leads to either collapse or decay of the variance.

1.2 Higher Point Correlators

This is where we left off. Before we move on, I would like to spend some time justifying some of the
simplifying assumptions that we made. The first is that we removed the biases from our networks.
This is the easiest to justify, as the major effect of the biases is to make the algebra nastier, without
changing any of the qualitative results we will show. We also removed the activation functions.
This one is harder to justify, and in fact, we will discuss how adding back the activation functions
changes the mathematics we are doing. The general point is though that while the networks we
study here represent a much smaller class of functions (just the linear ones) than a true MLP,
many of the conclusions we draw will apply to MLPs as well, and for the full derivations of those
equations, I refer you to the text.

The last simplification is the one I find most worthy of discussion. We are studying the networks
at initialization. That is, we are essentially studying products of Gaussian random matrices. Surely
by ignoring the training algorithm, we are losing something essential about the trained network

2

behavior! While this is certainly the case, and we will discuss how to incorporate training into
this framework, I will also point out that the training procedure can’t fix everything. For example,
if the gradients explode or vanish at initialization, then gradient descent can’t fix that, since the
algorithm itself will be unstable. Thus, we can gain truly meaningful insight into network behavior
by studying them at initialization. We will see a particular application of this later in this lecture.

For now, let’s move on to the four point correlator. Recall from last lecture that a Gaussian
distribution is specified completely by its mean and its covariance matrix. That is, while the
four point correlator (fourth moment) may be nonzero, the connected four point correlator (fourth
cumulant), and all higher cumulants will vanish. In keeping with the text, we will consider the
distribution of network outputs for a single input xα in this section.

Exactly as we did for the variance, let’s start by looking at the first layer. The algebra is almost
identical to what we did for the variance, so before you move on to this, make sure you understand
that.

E[zi1zi2zi3zi4] =
n0∑

j1,j2,j3,j4=1

E [Wi1j1Wi2j2Wi3j3Wi4j4]xj1xj2xj3xj4 (11)

=
C2

W

n2
0

n0∑
j1,j2,j3,j4=1

(δi1i2δi3i4δj1j2δj3j4 + δi2i3δi1i4δj2j3δj1j4 (12)

+ δi1i3δi2i4δj1j3δj2j4)xj1xj2xj3xj4 (13)

Wow that’s a lot of Kronecker deltas. We evaluated the expectation using Wick’s theorem,
which says that we can break down this 4 point correlator into sums of products of the covariances.
However, we know that for the weights, their covariance is 0 if i1 ̸= i2 or j1 ̸= j2, since the entries
of the matrix are drawn from independent Gaussians, and so we represent that through these
Kronecker deltas.

If we evaluate the sums over the j indices, we get the following simple expression out

= C2
W (δi1i2δi3i4 + δi1i4δi2i3 + δi1i3δi2i4) ·

1

n0

n0∑
j=1

xjxj (14)

where we recognize the summation to be the dot product of the input with itself. This is quite
similar to the metric we identified last week, Kα1α2

, but in this case since we are considering only
one data sample, it is a diagonal entry along K.

Then, we have finally that

E[zi1zi2zi3zi4] = C2
W · (δi1i2δi3i4 + δi1i4δi2i3 + δi1i3δi2i4)

(
K(0)

)2

(15)

where K is understood to be the diagonal entry along that covariance matrix we were using ear-
lier. Now, let’s evaluate the connected four point correlator, since this will tell us if the distribution
we have is Gaussian or not.

E[zi1zi2zi3zi4]− E[zi1zi2]E[zi3zi4]− E[zi1zi3]E[zi2zi4]− E[zi2zi3]E[zi1zi4] (16)

If you plug in the expression from Eq. 10, you will see that this exactly evaluates to 0. So, we
seem to have shown that the preactivation distribution is exactly Gaussian in the first layer. If we

3

repeat the same exercise as we did last week again, but for the four point correlator, we would now
derive a recursion for the fourth moment.

The algebra is quite similar to what we did for the recursion for the two point correlator, so I
will leave this as an exercise for the homework. If you’re curious, see Eq. 3.20 in the text.

E[z(l+1)
i1

z
(l+1)
i2

z
(l+1)
i3

z
(l+1)
i4

] = C2
W · (δi1i2δi3i4 + δi1i4δi2i3 + δi1i3δi2i4)

1

n2
l

nl∑
j,k=1

E
[
z
(l)
j z

(l)
j z

(l)
k z

(l)
k

]
(17)

= C2l
W · (δi1i2δi3i4 + δi1i4δi2i3 + δi1i3δi2i4)

[
l∏

l′=1

(
1 +

2

nl′

)]
(K(0))2l (18)

The precise details of how one gets from the previous step to this one are again, not terribly
relevant. For a better treatment, see the text. The point I would like us to focus on is the physics of
what is going on. Notice that this expression greatly simplifies in the limit of an infinite number of
neurons. Then, the product term vanishes entirely, and we recover our Gaussian 4 point correlator.

This is the first beautiful observation. At initialization, the preactivation distribution in an
infinite width network like this is perfectly Gaussian. This result turns out to hold up even when
we add the activation functions.

But again, recall that this infinite width limit is rather unrealistic. So, lets see what the deviation
from the infinite width case is when the width is finite but large. For simplicity, let’s assume all
the hidden layers are the same width.

∆ =

[(
1 +

2

n

)l−1
](

K(l)
)2

−
(
K(l)

)2

(19)

Taylor expanding in 1/n, we get

=
2(l − 1)

n

(
K(l)

)2

(20)

Pause for a moment and think about this. We have shown that in any arbitrary layer, the
distribution at initialization is approximately Gaussian, as long as the network remains wide. This
is what we mean when we discuss scaling. The network distribution’s variance is of order 1, while the
fluctuations from Gaussianity are order (1/n) or smaller. This justifies the choice to ignore higher
moments beyond the second (or sometimes fourth) in our analysis. As long as we are working in
the large width limit, we can still capture the qualitative features of our networks.

2 An Application: Oversmoothing in Graph Convolutional
Networks

2.1 Graph Basics

A graph G = (V,E) consists of:

• A set of nodes (or vertices) V = {v1, . . . , vN}.

4

• A set of edges E ⊆ V × V , where each edge (vi, vj) indicates a relation.

The adjacency matrix A ∈ {0, 1}N×N encodes connectivity:

Aij =

{
1, (vi, vj) ∈ E,

0, otherwise.

The degree matrix D is diagonal with entries Dii =
∑

j Aij .
In the context of graph learning, we often consider the degree normalized adjacency matrix with

self loops. That is, we add self loops to the graph, and then we multiply by the inverse degree
matrix.

2.2 Node Feature Vectors

In many tasks, each node has associated features. We assign to node vi a vector

xi ∈ RF ,

where F is the feature dimension. Stacking all node features gives the feature matrix

X =

x
T
1
...

xT
N

 ∈ RN×F .

These features can represent any local information: user attributes in social networks, atom
descriptors in molecules, or word embeddings in citation graphs.

2.3 Simple Message Passing Scheme

Graph neural networks often operate by iteratively exchanging information between neighbors. A
message passing layer updates each node’s representation by aggregating neighbors’ messages.

Given current node embeddings H(l) ∈ RN×d at layer l, a generic message passing update is:

m
(l)
i = AGGREGATE

(
{h(l)

j : j ∈ N (i)}
)
,

h
(l+1)
i = UPDATE

(
h
(l)
i ,m

(l)
i

)
,

where:

• N (i) = {j : (vj , vi) ∈ E} is the neighborhood of node i.

• AGGREGATE collects neighbor embeddings (e.g., sum, mean, or max).

• UPDATE combines the old embedding with the aggregated message (often via a neural net-
work layer).

A popular choice is the mean aggregation with a linear transform:

h
(l+1)
i = σ

(
W (l) · 1

|N (i)|
∑

j∈N (i)

h
(l)
j + b(l)

)
,

5

where W (l) and b(l) are learnable parameters and σ is an activation (e.g., ReLU).
This defines one layer of the graph convolutional network (in its most basic form). If we stack

many of these layers, we get a graph convolutional network (GCN).
The first thing I will point out is that the same MLP is applied to every node in the graph.

This will greatly simplify our analysis. The next thing to note is that each GCN layer increases
the “receptive field” of each node by 1 hop. That is, after k layers, information from k hops away
in the graph can get to the node in question. So, stacking more layers would allow information to
propagate further in the graph, enabling long range connections. In principle, this is a good thing.
We also know from our experience in other domains that deeper networks are better. They can
represent more complex functions, and do cooler things.

This is not the case in graph learning. As you increase the depth of the network, the performance
drops precipitously. This is due to a phenomenon called oversmoothing, in which after many layers
of a GCN, the feature vectors for all of the nodes begin to look the same, and the network loses its
ability to discriminate between nodes. We will demonstrate, with our formalism, exactly why this
happens.

It’s actually quite a simple argument. Going back to equation 10, we said that in our MLP, the
variance from layer to layer is multiplied by the constant CW . In the case of a GCN, we just have
to change our forward iteration equation. Instead of

z
(ℓ+1)
i;α =

nℓ∑
j=1

W
(ℓ+1)
ij z

(ℓ)
j;α (21)

we have that

z
(ℓ+1)
i;α =

∑
neighbors

nℓ∑
j=1

W
(ℓ+1)
ij z

(ℓ)
j;α (22)

That is, we change the forward aggregation to reflect the summation over neighbors. This, like
the case of the linear network, is a little clearer in matrix notation.

z
(ℓ+1)
i;α = W (ℓ)ÂZ(ℓ)

α (23)

where Z is the matrix of all of the preactivations, because, recall that we have one for each node
now.

Then, we can see, by the same argument as we made with the deep linear network, that the
variance of preactivations from layer to layer will go as

K(l) = Cl
W Â(l)K(0) (24)

where K = XTX. I am skipping many details in this derivation, since it is almost identical to
the result that we get in the deep linear network case. The key point is the variance goes now not
as the power of some tunable constant, but as the power of the adjacency matrix of the graph.

We can use the fact that the matrix is symmetric, which means the eigenvalues are real. Since
it is degree normalized, meaning that rows all sum to 1, we can show that the eigenvalues of this
matrix are in the range [-1, 1]. Then, we see that again we have an exponential working against
us. The spectrum of Âl decays rapidly, and so the covariance matrix rapidly decays to a low rank
matrix, meaning that all of the node features lie on a low dimensional manifold (i.e. they lose
variety).

6

