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1 Lecture 05 - Fokker-Planck Equations

Concepts to review prior to this lecture: Dirac Delta functions, Hessian matrices.

In the previous lecture, we saw how we could sample from a diffusion model by reversing the
stochastic differential equation that represents our diffusion model. Now, because we are solving a
stochastic equation, with a numerical solver, we have to take rather small time steps. This comes
down to the fact that since we are modelling a stochastic process, the function is not smooth, nor
is it even approximately smooth.

If there was a way to convert this stochastic differential equation to an ordinary differential
equation, or even a partial differential equation, we could bring the considerable machinery of the
applicable numerical methods to bear, and solve our differential equation much more efficiently. We
can also then use the resulting ODE to accurately compute the actually probabilities (likelihoods)
of particular samples.

Lucky for us, there is a way to perform precisely this conversion, and it is known as the Fokker-
Planck equation. The Fokker-Planck equation was introduced by Max Planck and Adriaan Fokker
in the early 1900s, to assist in the modeling of Brownian motion.

For an Itd6 SDE of the form

dX; = f( X, t)dt + g(Xe, t)dWy (1)

with an initial condition pg(z), the Fokker-Planck equation describes the probability flow. That
is, it tells us how the probability density changes over time.
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Which we can rewrite as
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This is a gnarly mess, so let’s take a moment to paint an intuitive picture, before we go into a formal
derivation. Equations of this form are called continuity equations, and they appear everywhere in
physics, from studies of fluid flow, to electric currents, to quantum mechanics. What this equation
is essentially saying is that the time rate of change of the probability density is equation to the
amount of probability flowing into that region of space. To see how, the first concept to understand
here is the V- operator, called the divergence.

The divergence is a sum over partial derivatives. Each derivative tells us how much our quantity
is changing in each direction, so, intuitively, we can understand the divergence as representing the
net outflow of the quantity from a particular region of space. Armed with this understanding, we
can try and understand the Fokker-Planck equation. Using the form in Eq. 2, we have that the
quantity whose divergence we care about is
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The first term is easier to tease apart. The function f is our deterministic drift velocity, so
naturally, the first term can be interpreted as a kind of momentum density, whose divergence then
gives the total amount of outflow due to the drift. The second term is harder, so let’s break it
apart.

gg”T is what is commonly called the diffusion matriz. As we learned before, g represents random
drift, and so this matrix tells us how much the probability density is spreading in each direction.
Now, diffusion on its own does not change the probability density, because all points are diffusing
at equal rates. Thus, we care more about the (spatial) rate of change of the diffusion. I.e. are the
points near me diffusing more or less than I am.

The actual derivation of the Fokker-Planck equation is rather hairy, and involves a bit of math-
ematical machinery known as It6’s Lemma.

1.1 It6’s Lemma

In order to derive the Fokker-Planck equation, we must first derive a sort of “chain rule” for the
stochastic calculus. This chain rule is called It6’s formula, and it tells us how to calculate the
differential of a function of a stochastic process. That is,

Given an SDE to describe the stochastic process, X, is the stochastic process Y; = n(X;) also
described by an SDE? If so, what are the drift coefficients of that SDE? The SDE can be written

dY; = f( Xy, t)dt + g( Xy, t)dt
It6’s lemma gives us a way to compute these coefficients:
flw.t) = V()" f(z,t) + Tr(g(x, )" Vn(2)g(x, 1)
a(e.1) = V(@) Tg(z. )g(z, 1) Vn(x)

To prove it, we can start by writing down an expression for Y;1, in the limit when the time
step h is small.
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Then, we Taylor expand 7, keeping the terms up to linear order in h.
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Here, V? is the Hessian matrix, not the Laplacian. To make progress, let’s look at that last
term:
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We see it has the form 1
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where A = hf(X;,t), B = Vhg(Xy,t)e, and M is the symmetric linear operator V?n(X;). We
recognize this as a quadratic form, and expand it as
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We substitute our definitions of A, B, M back in to get.
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The reason for this factorization is to clearly separate out what terms are of order h, h%, and
h?. We know that
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and so we can substitute in our expression for Yy to get,
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Using the fact that e is independent of X;, and that E(e? Ae) = Tr(e), we have that
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A similar argument for the variance gives
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In going from the first to the second line, we use the definition of Y;;, and in going from the
third to the fourth line, we use the fact that Var(Ae) for some standard normally distributed e is
the covariance matrix, AAT.

This concludes our derivation of It6’s Lemma.

1.2 Deriving the Fokker-Planck Equation

Armed with 1t6’s Lemma, the next task becomes to derive the Fokker Planck equation. Let us fix
a training sample, zg. We will define n;(z) ~ N (20, =) to be a Gaussian kernel centered at .
For some arbitrary, smooth function F', we have that

Fao) = tim [ nu(e)F(o)ds (12)

This is a direct consequence of the sifting property of the Dirac -function. As k& — oo, the Gaussian
limits to a Dirac d, and so we may apply this sifting property. In particular, for F' = p;, we have
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By Ito’s Lemma, we can come up with the stochastic differential equation that Y;¥ = n;(X)
follows.
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Note that we can ignore the stochastic term here, because we are taking an expectation, and the
stochastic term is mean-zero.

All that remains is to compute this expectation:
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This is the Fokker-Planck equation for the probability flow under our SDE. In essence, what
we did was we took our initial distribution, and we applied a Dirac-delta to it, and then used It6’s
lemma to derive an expression for the time evolution of our sample.



1.3 Applications to Diffusion

That was a lot of math. Let’s take a step back and bring this back to diffusion models. Our goal
is to come up with an ODE to sample from, instead of a stochastic differential equation. All that
remains now is to then take the Fokker-Planck equation, and apply it to our time-reversed SDE for
our diffusion model.

dX; = f(X¢, t)dt + g(t)dWs

If we start with a distribution, Xy ~ pg, and apply our SDE, we will get a stochastic process
X, with some distribution. Now we ask, is there an ordinary differential equation of the form

dZ, = F(Z,,t)dt

such that if Zy ~ Xj, then Z; ~ X;. The answer is yes, as we will now derive. Applying the
Fokker-Planck equation,
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So, we have constructed a formula for transforming our SDE into an ODE, which we can now
use to sample from our diffusion model.
Recall that in diffusion, we sample by simulating the reverse SDE

dX; = [f(Xe,t) — g*(t)V log p(Xy)]dt + g(t)dW;

where f, g are user defined functions, and the score is learned during training. Using the SDE-
2-ODE equation, we have that

A% = [[(Xe,t) = 36°(0)7 logp(Xo)d

Note that now there is no stochastic term, and so we have an ordinary differential equation. All
we need access to is the score function, which is learned during training. Sampling in this manner
yields equivalent results, but is significantly faster than sampling a diffusion model.

As a quick side note, this ODE formalism results in a close correspondence to what is known as
a continuous flow model. These models are the continuous time limit of a normalizing flow.



