
CMPTG 5 - Statistical Physics of Neural Networks

Sidharth Kannan

April 2025

1 Lecture 3 - Boltzmann Machines

1.1 Recap and Loose Threads

Last week, we derived an expression for the Boltzmann distribution, which is the probability distri-
bution over microstates for a system in thermal equilibrium with a reservoir. We saw that while it
is in principle possible to compute probabilities of occupation with this distribution, it is in practice
impossible, due to the intractability of the partition function.

To mitigate this issue, we proposed the mean field approximation, in which we assume that the
energy levels are independent, so that their marginal probabilities are tractable. We then assume
some “average interaction”, adjust the energies, and repeat. This gave rise to an iterative algorithm
which produced a similar distribution to the Boltzmann distribution.

We then removed the physics from our discussion, and instead considered a general system of
coupled binary units, and saw that if we assume a particular form for the energy, then this system’s
distribution of states will converge to the Boltzmann distribution. In particular, we used this to
define a kind of invertible logic gate. This is where we will pick up.

In particular, we will start by highlighting two aspects of our invertible circuit that were glossed
over last time: temperature, and Gibbs sampling. Once this is done, we will move on to how we
can use these circuits as generative models.

Let’s start with the p-bit equations:

Ii =
∑
j

Jijmj + hi (1)

mi = sgn (tanhβIi + randU [−1, 1]) (2)

The first thing to note is the effect of this parameter β. β is defined as 1
T , and so intuitively, we

would expect that low β correspond to high temperatures, where all states become equally likely,
whereas high β corresponds to low temperature, where the network state becomes frozen. This is
correct, and we can see that by looking at the behavior of the hyperbolic tangent.

The next thing to note is the issue of update order, and parallelism. We are iterating through our
network, computing the equations above, and updating our p-bit state. We can ask the following
questions:

1. Can I update spins in any order? Yes.

2. Can I update spins in parallel? Carefully.

1



To see why we have to be careful with parallel spin updates, let’s consider the simple, two spin
ferromagnetically coupled Ising. If we perform parallel updates when the model starts in state
[-1,1], it will stay in that state, which is incorrect.

This is a killer. If we can’t update in parallel, we are relegated to slow for-loop type programming
forever, which kills the efficiency of our network. It turns out that we can do better with blocked
Gibbs sampling.

Next, we will discuss simulated annealing, and parallel tempering.

1.2 Boltzmann Machines and Log-Likelihood

Now that we have a decent understanding of Ising machines, it’s time to finally tackle the learning
problem. Given a dataset, how can we determine the correct J matrix and h matrix, such that our
Ising machine will sample from the distribution we desire.

Given some set of parameters, θ, which in our case are the weights and biases, we wish to
maximize the likelihood of our training samples. That is, we wish to maximize P({x}|θ) for some
training set {x}. It is often more convenient to maximize the quantity known as the log-likelihood,
logP({x}|θ).

In the case of our Boltzmann machine, this actually takes a fairly simple form. We know
that our machine samples from the Boltzmann distribution, and so for any training state m, the
log-likelihood becomes

logP(x|θ) = log

(
1

Z
e−Eθ(βs))

)
(3)

= − logZ − Eθ(βs) (4)

= − logZ + β
∑
i

∑
j<i

Jijmimj + β
∑
i

himi (5)

When considering the entire training set, we simply have to take expectation of the states against
the dataset, like so. Here, I also drop the β, since it can be absorbed into either the weights or the
biases.

L ≡ ⟨logP(x|θ)⟩data = − logZ +
∑
i

∑
j<i

Jij⟨mimj⟩data +
∑
i

hi⟨mi⟩datad (6)

So, in order to maximize the log-likelihood of our data, we need to perform gradient ascent on
this function.

Before we get to that, I would like to point out a few things:

1. It may not be obvious how to evaluate the expectations in that formula, much less the partition
function, but bear with me for a moment. It turns out we can make a bit more analytical
progress before we turn our attention to that.

2. This general procedure of maximizing the log likelihood is how most generative models work.
We have taken two specific inductive biases here. First, we have say that the functional form
of P will be that of the Boltzmann distribution, and second, we have chose a specific form for
the energy function in that distribution. If you change the form of the energy function, you
will get a different class of energy based model. If you change the form of P, perhaps not even

2



insisting on an analytic form for it, then you will get different kinds of generative models,
such as variational autoencoders, normalizing flow models, etc.

Okay, back to Boltzmann machines. We want to evaluate the following derivatives: ∂L
∂Jij

, ∂L
∂hi

.

Let’s start with the first one.

∂L
∂Jij

= − ∂

∂Jij
logZ +

∂

∂Jij

∑
i

∑
j<i

Jij⟨mimj⟩data +
∑
i

hi⟨mi⟩data

 (7)

Let’s start with the first term again.

−∂ logZ

∂Jij
= − 1

Z

∂Z

∂Jij
= − 1

Z

∂

∂Jij

∑
states

exp

−
∑
i

∑
j<i

Jijmimj −
∑
i

himi

 (8)

=
1

Z

∑
states

mimj exp

−
∑
i

∑
j<i

Jijmimj −
∑
i

himi

 ≡ −⟨mimj⟩model (9)

Now let’s take a look at the second term in the derivative.

=
∑

training samples

∂

∂Jij

∑
i

∑
j<i

Jijmimj +
∑
i

himi

 (10)

= ⟨mimj⟩data (11)

Putting it together, we get that

∂L
∂Jij

=
1

N

∑
training samples

⟨mimj⟩data − ⟨mimj⟩model (12)

That is, the derivative log likelihood of the training dataset with respect to the connection
weight between neurons i and j is the difference between their average correlation in the training
data minus their average correlation in the current model. Similar arguments show that

∂L
∂hi

=
1

N

∑
training samples

⟨mi⟩data − ⟨mi⟩model (13)

Now comes the question of how to evaluate these expectations. In the case of the data, it is simple.
We can just apply the definition of the two point correlator, and see that

⟨mimj⟩ = uuT (14)

where u is the matrix of training samples.
However, in the case of the model, things are harder because we see that the partition function

makes an appearance. Thus, we have to sum over all 2N states of our Boltzmann machine. This
is obviously not scalable. In practice, we can use MCMC algorithms to approximate the average
correlation.

Now, this doesn’t entirely solve the problem. As we saw in the last lecture, even with Gibbs
sampling, each neuron must be updated in series. If you did question 3 on the homework from last
week, you saw that things are slightly better, in that we can update disconnected spins in parallel.
So, can we structure the Boltzmann machine in a way that allows us to more efficiently sample?

3



1.3 The Restricted Boltzmann Machine

Let’s say that instead of letting arbitrary nodes be connected, we split our graph into two layers:
the visible layer and hidden layer. See Fig. 1.

v1

v2

v3

v4

v5

v6

h1

h2

h3

h4

Visible Layer

Hidden Layer

Figure 1: A schematic of a Restricted Boltzmann Machine.

To make this a bit more concrete, say that we are trying to train an RBM to generate photos
of hand-written digits, like those in MNIST. Here, our visible units would correspond to the pixels
in the image, and the hidden units correspond to latent features.

Then, the rules for the derivatives simplify to

∂L(v)
∂Jij

= ⟨hivj⟩data − ⟨hivj⟩model (15)

That is, for each training sample, v, we can now just consider the correlations between the
hidden and visible units. We can also now update all of the hidden nodes in parallel, and all of the
visible nodes in parallel, since we have enforced that they are disconnected.

When training an RBM, the algorithm most commonly used is known as contrastive divergence.
The gradient of the log-likelihood for an RBM includes two terms: the expectation of the data, and
the expectation of the model

The expectation over the model requires computing expectations over all possible configura-
tions of visible and hidden units, which is computationally infeasible for even medium size models.
Contrastive divergence approximates the gradient by:

1. Starting a Markov chain from the data.

2. Running a few steps (often just one, known as CD-1) of Gibbs sampling.

4



3. Using the difference between data-driven and model-driven statistics to update the parame-
ters.

In more detail,

Step 1: Positive Phase (Data-driven) Given a data point v(0):

1. Clamp the visible units to v(0). Compute the hidden unit activation probabilities:

p
(
hj = 1 | v(0)

)
= σ

(
cj +

∑
i

Wijv
(0)
i

)
,

where σ(x) = 1
1+e−x is the logistic function.

2. Sample the hidden activations h(0) from these probabilities.

Step 2: Negative Phase (Reconstruction)

1. Reconstruct the visible units using the sampled hidden states:

p
(
vi = 1 | h(0)

)
= σ

bi +
∑
j

Wijh
(0)
j

 .

Sample a new visible vector v(1) from these probabilities.

2. Recompute the hidden activations using the reconstructed visible vector:

p
(
hj = 1 | v(1)

)
= σ

(
cj +

∑
i

Wijv
(1)
i

)
.

Sample these to obtain h(1).

Step 3: Parameter Update The weight update is based on the difference between the data-
driven and model-driven (reconstruction) statistics:

∆W ∝ ⟨v(0)h(0)⟩ − ⟨v(1)h(1)⟩.

Similarly, the biases are updated as:

∆b ∝ v(0) − v(1) and ∆c ∝ h(0) − h(1).

Now there are a few things to note here:

1. The contrastive divergence algorithm does not wait for the Markov chain to equilibrate.

2. It does not directly maximize the likelihood; instead it minimizes another objective called the
KL-divergence between the model distribution and data distribution.

5


