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1.1 Introduction

This course is about the interplay between statistical mechanics and machine learning, and so it
would likely be apt to begin by defining those two terms.

Statistical mechanics is a branch of physics that emerged in the mid-19th century to provide a
microscopic account of thermodynamic phenomena. It deals primarily with the problem of modeling
large collections of particles, so numerous that even if we knew the fundamental, microscopic laws
that determined each particle’s motion, it would simply be impossible to carry out the computation
that would tell us their behavior. How do we proceed then? Well, it turns out that often, we are
not interested in the specific behavior of each atom, but rather we care about large, macroscopic
properties of the entire system. For example, if I have a container of neon gas, and I want to know
what will happen to it if I heat it, I am not so concerned with the specifics of the motion of each
atom, but rather the aggregate behavior of the whole volume. Making some simple assumptions, it
turns out that there is actually quite a lot that we can say about the aggregate behavior of particles,
even when we cannot speak to their individual behaviors.

Machine learning is a very interdisciplinary field, but its primary concern is how to build algo-
rithms or models that, given some examples, termed a dataset, can learn to perform some down-
stream task. For example, given a set of images of hand written digits, learn a computer program
that can identify handwritten digits. The specific type of machine learning that has really taken the
world by storm these past few years is called ”deep learning.” The name derives from the structure
of the models under consideration.

1.2 Logistics and Syllabus

The rough plan for the course is to divide it into two sections. The first, I will title Learning as
Inverse Thermodynamics. The goal for this part of the course is to understand how we can formulate
the learning problem as the reverse of the time evolution of a physical system. In particular, we
will discuss two classes of machine learning models: energy based models and diffusion models.

The second part of the course will be about field theories of neural networks. In this part, we
will focus more on the theory of neural networks, and how ideas from statistical mechanics, that
were first used to understand the interactions of gas particles can be applied to complex systems
of interacting neurons. Despite this being a theory course, throughout, I will try to highlight the
practical relevance of what we are discussing.

Tentative Schedule of Topics:
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1. Machine Learning as Inverse Thermodynamics

(a) Equilibrium stastical mechanics and energy based models

i. Introduction to statistical mechanics, the Boltzmann Law

ii. Binary stochastic neurons, Ising Machines, and optimization

iii. The Boltzmann Machine

(b) Generative diffusion models and non-equilibrium thermodynamics

i. Score-based modeling

ii. Stochastic processes, Brownian motion, and Langevin dynamics

iii. The Itô calculus, stochastic differential equations, and diffusion

iv. Fokker-Planck equations and flows

2. Field Theories of Neural Networks

(a) Intro to field theories of neural networks, mathematical preliminaries

(b) Deep linear networks

(c) Understanding oversmoothing in Graph Neural Networks

(d) Neural Tangent Kernels and neural network Hamiltonians

The background that I will be assuming is a basic proficiency in machine learning, and a strong
grasp of probability. That is to say that I won’t be going over things like gradient descent, back-
propagation, multilayer perceptrons, etc. in much detail. I also will assume basic knowledge of
linear algebra, probability, and calculus, to the level of a typical machine learning class. We are
covering some very advanced topics at the very cutting edge of machine learning and generative
AI. As such, we will use probability and calculus in particular at a higher level than a typical intro
ML class.

A brief note about logistics. This course is 2 units, P/NP. As such, the workload will be minimal.
In order to achieve a passing grade, you just need to attend every week. Every week or every other
week, I will also post some useful exercises. These will either be calculations, proofs, or simple
programming exercises. They are entirely optional, and are just intended as a learning tool to help
solidify your understanding of concepts that may have been unclear. If you do happen to miss a
class, you can make that up by doing some number of the exercises from that week.

I have LaTeXed notes that I will post every week for those unable to attend. If you have
questions about this stuff, you can either talk to me after class, or email me at skannan@ucsb.edu.

With all that out of the way, let’s get started!

1.3 Natural Computing

The first thing I would like to do is provide a high level intuition for why we would expect that
physics would have anything to say at all about the learning problem.

Let’s start by formulating the learning problem in more formal terms. The simplest class of
model is 1D linear regression. In a linear regression problem, our model is something of the form

y = mx+ b (1)
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and given a set of data points, we want to find the value of m, b, so that our line most accurately
fits the data. One way that one might do this is with gradient descent. We define some loss function
that we wish to optimize, and then we compute the gradient of that loss with respect to our two
parameters. For example, we could use the MSE loss.

L(x,y) =
∑
i

(yi − (mxi + b))
2

(2)

And we determine our model parameters, m and b by starting them at some random values,
and then computing the gradient of the loss function with respect to each of them, and following
the negative gradient down.

In the case of generative AI, we formulate the problem slightly differently. Instead of trying to
learn a function that maps an input domain to an output domain, we try to learn a probability
distribution over some support, along with a method to sample from that probability distribution.

Now let’s change tacks a little bit.
Consider a ball inside of a bowl (see Fig. 1.3). Our everyday physical knowledge tells us that

the ball will roll down until it is at the bottom of the bowl. Physically, we formulate this as because
the ball experiences some force, F, which is the negative gradient of some potential energy function.
In one dimension,

F = −dU

dx
(3)

Figure 1: A ball moving in a bowl-shaped potential well.

Now in practice things are a little more complicated than the simple examples I’ve presented.
In time, we will see that for thermodynamic systems, the quantity that is minimized is in fact not
the energy, but something termed the free energy of the system. For now, though, the point I
would like you to take away is that many natural systems, left to their own devices, follow some
sort of optimization principle that looks like our gradient descent problem, with the energy function
playing the role of the loss.

If we could design a physical system (or simulate one), in which states of low energy corresponded
to solutions to our optimization problem, then we could quickly solve a lot of hard problems just
by constructing our physical system and letting it settle. In fact, this is the operating principle of a
broad class of quantum computers, called quantum annealers (see D-Wave Systems), as well as the
thermodynamic computing solutions being built by companies like Extropic, Normal Computing,
Ludwig Computing, etc.
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1.4 Statistical Mechanics

Now that we understand that natural systems follow optimization principles, I will present a whirl-
wind tour of some major results of statistical mechanics, and then we will see how these can be
used to formulate our first class of machine learning models, the Boltzmann machine. The goal of
this section is to come away with an understanding of free energy, and how the dynamics of natural
systems automatically lead to the minimization of free energy.

Let’s start with definitions. As a brief disclaimer, some of these definitions will not be physically
rigorous, in that I will be providing definitions that correspond to the things we are interested in
in this class, not the most general, physically correct definitions.

1. A system is the object(s) under study. For example, the “system” could be a hydrogen atom,
with its various orbital energy levels, or something more abstract, like the result of flipping a
coin 10 times.

2. A microstate is specific microscopic configuration of the system, characterized by the exact
positions and momenta (or states) of all constituent particles. For example, in the case of
flipping a coin ten times, the outcome HHTTHHTTHT would be a specific microstate.

3. A macrostate is a characterization aggregate statistical properties. In the case of a gas, this
could be temperature, pressure, volume, and total energy. In the case of our coin, ”5 heads,
5 tails” would be one macrostate, while ”10 heads, 0 tails” would be another. A macrostate
encompasses many possible microstates that share the same macroscopic properties.

4. A reservoir is system that is so large that it can exchange particles or energy with another
system without any significant change to its macroscopic properties. For example, if the
system I am studying is a melting ice cube, I might say that the atmosphere is a reservoir. The
ice cube will absorb some energy from the atmosphere, and, in principle, cool the atmosphere
a little bit, but the atmosphere is so large and energetic that the amount of energy it loses,
and thus the change in its temperature, are negligible.

5. A system is at equilibrium when all of its macroscopic properties, like temperature, pressure,
volume, magnetization, etc. are constant in time.

The last thing we must mention is the fundamental assumption of statistical mechanics: For
an isolated system at equilibrium, all accessible microstates are equally likely. To be clear, this
is an assumption, not a derivable fact. However, this assumption can be made plausible in many
ways, but most convincingly perhaps, by the fact that the physics that stems from it is an accurate
descriptor of our world.

Great, now that we have our definitions, let’s do some physics. We are going to use some
elementary physical principles and rules of probability to derive the “Boltzmann distribution”. The
argument we follow is due to Schroeder.

Imagine our system is just a single hydrogen atom (with non-degenerate energy levels), and the
reservoir is some bath of energy, say a star (Fig. 2).
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Figure 2: A system with infinitely many energy levels in contact with a thermal reservoir.

For the purposes of this example, let’s pretend that the system can only exchange energy with
the reservoir, not particles. If our atom were truly isolated, its energy would be fixed, and so it
would remain in the same microstate forever. However, because of the reservoir, energy can be
transferred into and out of the system, meaning that there is some distribution of states.

Let’s start with the probability of finding the atom in a particular microstate. According to our
fundamental assumption, each microstate is equally probable for an isolated system, but our system
isn’t isolated. However, the reservoir-system pair constitutes an isolated system, so let’s look at its
microstates. The probability of a particular microstate depends on all of the microstates, so let’s
start by looking at the ratio of probabilities between two states.

P(ES = Ei)

P(ES = Ej)
=

Ω(ER = U − Ei)

Ω(ER = U − Ej)
(4)

Here is a good place to introduce the next major concept of statistical mechanics, entropy.
Entropy is defined as the logarithm of the number of microstates. It is useful to take the logarithm
for a number of reasons that will become apparent, not least because the number of microstates
can grow very, very large.

S = k log Ω (5)

Rewriting our ratio in terms of the entropy,

P(ES = Ei)

P(ES = Ej)
=

exp (S(U − Ei)/k)

exp (S(U − Ej)/k)
= exp

(
∆SR

k

)
(6)

Assuming that U ≫ Ei, Ej , we can expand around Ei, Ej = 0.
For the sake of time, I will not prove the following relation, but it turns out that

1

T
=

∂S

∂U
(7)

and so we can rewrite this identity as

P(ES = Ei)

P(ES = Ej)
= exp

(
∆E

k

∂S

∂E

∣∣∣∣
U

)
= exp

(
∆E

kT

)
=

exp
(
Ei

kT

)
exp

(
Ej

kT

) (8)
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We assume that ∂S
∂E = 1

T > 0, which is to say that temperature is strictly non-negative. There
are some systems that can have negative absolute temperatures, but this is beyond the scope of our
discussion. Using Eq. 8, we have that

P(ES = Ei)

exp
(
Ei

kT

) =
P(ES = Ej)

exp
(

Ej

kT

) (9)

Since the left depends only on Ei, and the right depends only on Ej , we have that it must be a
constant, which we will call Z. Then,

P(s) =
1

Z
e−

E(s)
kT (10)

where the partition function, Z, is given by

Z =
∑
i

exp

(
−E(i)

kT

)
(11)

In the continuous case, the sum is instead replaced with an integral over states. This is the
Boltzmann Law, and it is the most important equation in statistical mechanics. From it, we can, in
principle, calculate the probability of a thermal system being in any particular state. We see that
low energy states are, in fact, more probable. As temperature increases, the distribution becomes
more uniform. As temperature decreases, the probability of being in the ground state approaches
1, and the probability of the other states goes to 0. To bring things back to where we started, we
now understand why thermodynamic systems approach the state of lowest energy, and so if we can
construct a system, such that the energies of desirable states are low, and energies of undesirable
states are high, then we can find the optimal solution with high probability, just by sampling from
this distribution.

As a quick note, we can generalize the Boltzmann Law to the case where we allow both particle
and energy exchange as follows:

P(i) =
1

Z
exp

(
−E(i)− µn(i)

kT

)
(12)

where here we have defined the electrochemical potential, µ, to be ∂S
∂n , and n(i) is the number of

particles in the system in microstate i.
Some caveats about the Boltzmann Law. What turns out to be the main problem in using

this Boltzmann distribution for any kind of computational task is the intractability of the partition
function.
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